پایان نامه ها و مقالات

دی اکسید کربن

شامل چندین مکانیسم برای تأخیر اشتعال است که عبارتند از:
۱- رقیق کردن مقدار ماده آلی قابل اشتعال به وسیله افزودن ذرات پرکننده داخلی.
۲- کاهش دمای کامپوزیت به وسیله افزودن پر کننده هایی که به عنوان جاذب حرارتی۱۰ عمل می کنند.
۳- کاهش دما به وسیله افزودن پر کننده هایی که به صورت گرماگیر تجزیه شده و محصولاتی مانند آب یا دیگر محصولات غیر قابل اشتعال با ظرفیت حرارتی ویژه بالا تولید می کنند.
۴- کاهش میزان نرخ رهایش حرارت به وسیله بکارگیری پلیمرهایی که توسط واکنش‌های گرماگیر تجزیه می‌شوند.
۵- افزایش آروماتیسیته۱۱ ماتریس پلیمری به منظور اینکه به یک سطح و لایه عایق فضای کربنی۱۲ تجزیه شود که هدایت حرارتی درون کامپوزیت را کاهش می دهد و انتشار گازهای قابل اشتعال را کاهش دهد.
کامپوزیت های پلیمری که جزء تأخیر دهنده های اشتعال از نوع فاز گاز۱۳ می باشند، به وسیله ممانعت از واکنش اشتعال عمل می‌کنند. در نتیجه هم کاهش انتشار شعله و هم بازگشت مقدار حرارت از سوی شعله به ماده را در این نوع مشاهده می‌شود. مکانیسم‌های موجود در نوع فاز گاز که به صورت گسترده جهت تأخیر اشتعال به کار گرفته شده است معمولاً رهایش رادیکال های بر پایه برومین، کلرین و فسفره را خواهند داشت که باعث اختتام واکنش های اشتعال گرمازا از طریق حذف رادیکال های H و OH از شعله خواهند شد. یکی دیگر از مکانیزم های معمول این دسته رهایش بخارات غیر قابل اشتعال برای رقیق کردن غلظت گازهای H و OH در شعله است. همچنین باعث کاهش دما نیز خواهد شد. در حالی که بسیاری از تأخیر دهنده های اشتعال تنها با یکی از مکانیسم های فاز متراکم و یا فاز گاز عمل می کنند، تأخیر دهنده هایی بیشترین تأثیر را دارند که از هر دو مکانیسم فازها در یک زمان واحد استفاده می کنند.

تأخیر دهنده‌های اشتعال برای کامپوزیت‌ها۱۴
مواد تأخیر دهنده اشتعال متنوعی برای پلیمرها و کامپوزیت های پلیمری ارائه شده است. در حدود ۲۰۰-۱۵۰ آمیزه و ماده مختلف برای استفاده وجود دارد. [۲-۷]
تأخیر دهنده‌های اشتعال یکی از بزرگترین گروه از افزودنی‌هاست که در پلیمرها استفاده می شود. این مواد در حدود ۲۷% از بازار افزودنی پلاستیک را به خود اختصاص داده است. رتبه بعدی متعلق به پایدار کننده حرارتی (۶/۱۵%) آنتی اکسیان ها (۶/۷%) روان کننده ها (۶%) و پایدار کننده اشعه ماوراء بنفش (۵%) می باشد. مواد تأخیر دهنده اشتعال با پلیمر طی فرآیند آلیاژ می شوند اما به صورت شیمیایی با پلیمر واکنش نمی دهند. ترکیب شیمیایی بسیاری از آنها بر اساس عناصر آنتیموان، آلومینیوم، بروم، فسفر، برومین، کلرین است که این مواد تأخیر اشتعال درصد زیادی را تأمین می کنند. به صورت تخمینی در حدود ۹۰% از مواد افزودنی بر اساس این عناصر هستند و به شکل اکسیدهای آنیتموان، آلومینیوم سه آبه و اکسیدهای برون کاربرد دارند. به مقدار کمتری نیز افزودنی هایی شامل باریوم، روی، تین، آهن، مولیبدنیوم یا گوگرد وجود دارند. بسیاری از افزودنی ها شامل نمک های فلزی هیدراته هستند که به صورت گرماگیر در شعله تجزیه می شوند و در نتیجه میزان و نرخ رهایش حرارت کلی پلیمر را کاهش می دهند. برخی دیگر از عناصر افزودنی نیز در هنگام تجزیه بخار آب آزاد می کنند طی فرآیند تجزیه و این بخار آب باعث رقیق شدن و کاهش غلظت گازهای قابل اشتعال رهایش شده خواهند شد. کامپوندهای واکنشی نیز با زرین در هنگام فرآیند پلیمریزه می شوند و دارای ساختار شبکه ای مولکولی یکپارچه شوند. تأخیر دهنده های واکنشی اشتعال به صورت اساسی بر پایه هالوژن بروم و کلر، فسفره و عناصر معدنی و ملامین هستند. در حال حاضر بروم و کلر، تأخیر دهنده های معمولی هستند زیرا قدرت زیادی در یکباره سرد کردن شعله دارند. کامپوندهای هالوژن به وسیله رهاسازی اتم های برومین و کلرین فعال به درون شعله در برابر اشتعال پذیری مقاومت می کنند. این اتم ها واکنش اکسیداسیون احتراق گازهای اشتعال پذیر را متوقف می کنند. اگرچه در حال حاضر از سوی مقامات دولتی و طرفداران طبیعت تصمیماتی جهت استفاده از تأخیر دهنده های اشتعال غیر هالوژن گرفته شده است (این ترکیبات به طبیعت لطمه وارد می کنند). ترکیبات فسفره یکی دیگر از ترکیبات مؤثر در ارتباط با اشتعال است این ترکیبات میزان گازهای قابل احتراق حاصل از تجزیه را به وسیله افزایش تشکیل ذغال کاهش می دهند. انتخاب تأخیر دهنده اشتعال برای کامپوزیت پلیمری چندین عامل و فاکتور بستگی دارد که شامل هزینه، سازگاری شیمیایی میان تأخیر دهنده اشتعال و پلیمر میزبان دمای تجزیه ماده و وزن. بسیاری از پرکننده های تأخیر دهنده اشتعال خواص مکانیکی پلیمرها را کاهش می دهند. البته می توان به وسیله اصلاح سطح پرکننده این تأثیرات منفی را کاهش داد و بر همکنش میان ذرات و ماتریس پلیمری را بهبود بخشید. برخی مواد پر کننده با وجودی که اشتعال پذیری را کاهش می دهند مقدار دود و دودهای سمی را با تجزیه ماده افزایش می دهند. به خاطر همین دلایل سعی بر این است که ترکیبی از تأخیر دهنده های اشتعال در کامپوزیت های پلیمری استفاده شود تا میزان مقاومت در برابر اشتعال پذیری افزایش یابد و در عین حال تأثیرات مضرب و منفی و مضر روی ویژگی ها و خواص مکانیکی، دود و سمیت به کمترین مقدار ممکن برسد. پرکننده ها عناصر غیر فعال معدنی هستند که به پلیمر طی مراحل پایانی فرآیند افزوده می شود تا اشتعال پذیری محصول نهایی کاهش یابد. قطر ذرات پرکننده زیر ۱۰ میکرو
م
تر است و اغلب در محدوده میکرون است. ذرات به زرین مایع آلیاژ می شود و به صورت یکنواخت در آن پراکنده می شود. بیشتر پلیمرها نیاز به مقدار زیادی پرکننده جهت نشان دادن بهبود محسوس در مقاومت اشتعال پذیری شان دارند. مقدار حجمی کمینه معمولاً در حدود ۲۰% و مقدار متوسط در حدود ۵۰% تا ۶۰% است. پرکننده باید با پلیمر سازگار باشد. در غیر این صورت خواص مکانیکی و دوام و بقای محیطی ماده از بین رفته و کاهش یابد. پرکننده ها می توانند اثرات مخرب بر روی خواص بگذارند این اثرات شامل افزایش و سیکوزیتید، کاهش زمان ژل شدگی مذاب پلیمری که باعث مشکل شدن فرآیند گردد، می شود. بیشتر پرکننده ها به صورت تدریجی با تحت مجاورت قرار گرفتن رطوبت دچار هیدرولیز شده و از بین می روند و این عامل جهت کاهش خاصیت تأخیر اشتعال آنها خواهد شد. با وجود این مشکلات پرکننده ها اغلب به دلیل هزینه پایین آنها افزودن آسان آنها به پلیمر و قابلیت مقاومت اشتعال پلیمر استفاده می شوند. این نکته قابل اهمیت است که پرکننده ها به ندرت به تنهایی استفاده می شود اما در مقابل به صورت ترکیبی با تأخیر دهنده های اشتعال دیگر (مثل ارگانوهالوژن ها یا ارگانوفسفره ها) برای رسیدن به مقدار زیاد مقاومت در برابر اشتعال استفاده می شود. ما دو نوع پرکننده تأخیر دهنده اشتعال داریم: خنثی و فعال که بر اساس نوع فعالیت مشخص می شود:
الف) پر کننده های تأخیر دهنده اشتعال خنثی۱۵
این نوع پر کننده توسط چندین مکانیسم، اشتعال پذیری و تولید دود کامپوزیت پلیمری را کاهش می دهند. مکانیسم برتر و مهم بر این اساس است که میزان سوخت به وسیله رقیق کردن درصد جرمی ماده آلی در کاپوزیت به وسیله افزودن پر کننده غیر قابل اشتعال، کاهش می دهد. در این حالت مقدار پلیمر به شدن باید کاهش یابد و به همین دلیل مقدار پر کننده در حدود ۵۰ تا ۶۰ درصد خواهد بود (مورد نیاز است). مکانیسم دیگر جذب گرما به وسیله پلیمر است و میزان و نرخ سوخت ماتریس پلیمری کاهش خواهد یافت. برای اینکه پرکننده جاذب حرارت باشد باید ظرفیت حرارتی آن از پلیمر میزبان بیشتر باشد. برخی دیگر از پلیمرها اشتعال پذیری پلیمر را به وسیله تشکیل لایه سطحی عایق زمانی که پلیمر تجزیه می شود و تبخیر می شود کاهش می دهند. این لایه عایق میزان و نرخ تجزیه ماتریس پلیمری را کاهش می‌دهد. این لایه سطحی مانع جریان مواد ناپایدار قابل اشتعالی به درون شعله خواهد شد و باعث کاهش بیشتر میزان تجزیه خواهد شد. همه پرکننده ها به وسیله کاهش میزان جرم پلیمر و بیشتر پر کننده ها به عنوان جاذب حرارت عمل می کنند. فقط تعداد کمی از پرکننده ها هستند که باعث به وجود آمدن لایه سطحی عایق می‌شوند. پرکننده‌هایی خنثی که به طور معمول به پلیمرها و کامپوزیت های پلیمری افزوده می شوند شامل سیلیکا، کربنات کلسیم، دوده هستند. این پرکننده ها اشتعال پذیری و تولید دود را از طریق مکانیسم رقیق کردن و یا جذب گرما کاهش می‌دهند. در موارد جزئی نیز از سیلیکات های رس هیدراته ساده مانند پومیس۱۶، تالک۱۷، gypsum و سولفات کلسیم دوآبه۱۸ استفاده می‌شود.
ب) پرکننده‌های تأخیردهنده اشتعال فعال۱۹
این پرکننده تأثیرات بیشتری بر روی پلیمر از لحاظ تأخیر اشتعال و تولید دود نسبت به پرکننده خنثی خواهد گذاشت. پرکننده فعال نیز مانند پرکننده خنثی به عنوان جاذب حرارت و دقیق کننده ماتریس در کامپوزیت عمل می کند. همچنین این نوع پرکننده در فاز متراکم فعالیت می کند. در زمان تجزیه در دماهای بالا و واکنش های گرماگیر مقدار زیادی گرما را جذب می کند و این تأخیر خنک کنندگی باعث کاهش میزان و نرخ تجزیه ماتریس پلیمری خواهد شد. واکنش تجزیه پرکننده باعث رهایش گازهای بی اثر به مقدار زیاد خواهد شد گازهایی مثل بخار آب و دی اکسید کربن که این گازها نیز می توانند به درون شعله نفوذ کرده و غلظت مواد ناپایدار اشتعال پذیر، رادیکال های H و OH را کاهش و رقیق می کند. این رقیق کردن باعث کاهش دمای شعله شده که خود باعث نرخ تجزیه ماده کامپوزیتی می شود. دمای تجزیه پرکننده یک عامل بحرانی و مؤثر در تأخیر دهندگی اشتعال آنهاست. دمای تجزیه بایست بیشتر از دمای فرآیند آنهاست تا دیگر پرکننده در طول ساخت ماده کامپوزیتی تجزیه نشود. کامپوزیت های شامل رزین‌های ترموپلاستیک دما بالا، مانند پلی فنیلن سولفید۲۰ یا پلی اتر اتر کتون۲۱ بایت در دمای حدود ۴۰۰-۳۰۰ درجه سانتی گراد فرآیند شوند. بنابراین پرکننده های مورد استفاده برای این مواد باید در دماهای این محدوده تجزیه نشود. همچنین دمای تجزیه پرکننده بایست پایین تر از دمای پیرولیز ماتریس پلیمری باشد که بسیاری زرین ها مورد استفاده در کامپوزیت این دما بین ۴۵۰-۳۰۰ درجه سانتی گراد است. بسیاری از اکسیدهای فلزی۲۲ و هیدروکسیدهای فلزی۲۳ به عنوان تأخیر دهنده های اشتعال فعال مورد استفاده قرار می گیرد. در این بین معمول ترین و پر مصرف ترین آلومینیوم تری هیدراته Al(OH)3 است. همچنین انواع دیگر از اکسیدهای آلومینیوم نیز مورد استفاده است. همچنین ترکیبات اکسیده دیگر مثل ترکیبات آنتیموان (sb2o3,sh2o5)، آهن (مثل فروسن ferocene، FeOOH، FeOCl)، ترکیبات مولیبدنیوم (MoO3)، منزیم (Mg(OH)2) روی و تین tin قابل کاربرد است. به وسیله فعالیت این عناصر و پرکننده اشتعال و همچنین تشکیل دوده به مقدار قابل توجهی متوقف خواهد شد. اگرچه میزان تأثیر آنها به صورت کلی با افزایش غلظت آنها در ماتریس پلیمری افزایش خواهد یافت. مانند پرکننده های خنثی میزان بارگزاری بالایی از پرکننده (۶۰
-۲۰%) جهت یک کاهش اساسی در اشتعال‌پذیری مورد نیاز است.عنصرهای پایه نیتروژن یکی از مؤثرترین تأخیر دهنده های اشتعال است این عنصر به همواره ترکیبات گوانیدین و ملاحین سال ها برای بهبود مقاومت اشتعال در پوشاک های پشمی، لباس های کتونی و کاغذ مورد استفاده بوده است. اما افزودنی های پایه نیتروژن به ندرت به عنوان تأخیردهنده اشتعال در کامپوزیت های پلیمری مورد استفاده قرار می‌گیرد.

پرکننده تأخیر دهنده اشتعال متورم شونده۲۴
این نوع پر کننده جزء پرکننده های فعال هستند. این روش یکی از نوین ترین روش های بهبود مقاومت اشتعال مواد کامپوزیتی است. نمونه ای از این پرکننده ها پلی فسفات/ ؟؟؟ ترتیول است که در دماهای بالا متورم می شود. مکانیسم عملکرد این نوع پرکننده در کامپوزیت به صورت شماتیک در شکل ۱۰-۸ نشان داده شده است. زمانی که کامپوزیت تحت مجاورت شعله قرار می گیرد ذرات متورم شونده واکنش داده و مقدار زیادی گازهای غیر قابل اشتعال و غیر سمی که در ماتریس پلیمری گیر می افتد ایجاد می شود. تجمع این گازها باعث می شود که پلیمر نرم شده به فوم و پلیمر متورم شده تبدیل شود. در صورتی که ماتریس پلیمری قابلیت تبدیل به ذغال (char) را داشته باشد با افزایش دما ماتریس تجزیه شده و باعث تولید لایه ذغالی متخلخل عایق خواهد شد. این لایه ماده کامپوزیتی اصلی را حفظ و حمایت می کند. Kovar و همکاران[۸]به این نتیجه رسیدند که فرآیند تولید فوم زمانی اتفاق خواهد افتاد که پلیمر در حالت ویسکوز نرم۲۵ باشد. اگر ذرات پرکننده در دماهایی پایین‌تر از دمای انتقال شیشه پلیمر تجزیه شوند در این حالت ماتریس سخت۲۶ خواهد بود و قابلیت تولید فوم و تورم را نخواهد داشت. در مقابل در صورتی که میزان فشار حاصل از تولید سریع گازها می تواند منجر به تولید شیار و لایه لایه شدن در کامپوزیت‌های سخت خواهد شد. در صورتی که تجزیه در دماهای بالا اتفاق افتد گازها می تواند از درون کامپوزیت خارج خواهد شد و لایه متورم شده ای تشکیل نخواهد شد. در صورتی که درجه بالایی از حمایت در برابر آتش را بخواهیم دمای واکنش تجزیه ذرات متورم شونده ها باید بالاتر از دمای انتقال شیشه و کمتر از دمای تجزیه ماتریس پلیمری باشد.

پلیمرهای تاخیر دهنده اشتعال قابل استفاده در کامپوزیت‌ها۲۷
تعداد زیادی از پلیمرهای تأخیر دهنده اشتعال در حدود ۲۶ سالی است که ارائه شده است و بسیاری از این موارد مناسب برای استفاده در کامپوزیت های لیفی است. اتصال مولکول های بروم، کلر یا فسفر به ساختار مولکولی پلیمر معمول ترین و رایج ترین روش بهبود مقاومت اشتعال رزین‌های ترموست و ترموپلاست است. یک

پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *